Software Design

1. Code structure

e COMMANDS: This part specifies the different commands used to transmit the data
between the OBC and the Camera. These commands are specified on the datasheet, and
are sent using the “Basic” functions. These commands are declared on the camerav2.c
file, and a more detailed explanation can be found there.

e ADDRESSES: The directions of the camera where the data is stored. It is stored the data
itself, the resolution and the compressibility in the memory. Actually and due to the
implementation structure, the camerav2.c uses the 0x082000 address, which has been
selected by the OBC team.

e “BASIC" Functions: These functions are the ones which directly communicate with the
camera and the OBC. These functions are the ones which execute the command directly
with the camera, and these functions are used internally inside camerav2.c . One example
would be reset, which sends the information directly to the Camera.

e “COMPOSITE” Functions: These functions are the main ones, which the OBC will use on
the program. These functions are composed of BASIC functions. These functions are
InitCam and GetPhoto. These functions, due to its importance, will be explained after.

e “CORRECTION” Functions: These functions are used to check if the OBC correctly
receives the photo from the camera, and what to do if the error occurs. They are
checkACK() and errP(). These functions, due to its importance, will be explained after.

e “EXTRA” Functions: These functions are used during the full code, which are used
mainly for storeData, either the infoBuffer or the FlashMemory. These functions will be
explained later.

Taking into account these summary of the functions, a detailed explanation of each case will be
explained.

2. Summary of functions

A summary of the functions developed is presented now:

FUNCTION TYPE DESCRIPTION

bool reset(UART_HandleTypeDef BASIC Executes reset command.
huart)

bool getVersion(UART_HandleTypeDef = BASIC Executes getVersion command.
huart)

bool BASIC Sets the resolution from the user.
setResolution(UART_HandleTypeDef
huart)

bool BASIC Sets compression from the user.
setCompressibility(UART_HandleType
Def huart)

bool BASIC Executes startCapture command
startCapture(UART_HandleTypeDef
huart)

bool BASIC Obtained the length of an image.
getDatalLength(UART_HandleTypeDef
huart)

bool getData(UART_HandleTypeDef BASIC Obtains an image.
huart)

bool BASIC Executes stopCapture command.
stopCapture(UART_HandleTypeDef
huart)

bool initCam(UART_HandleTypeDef COMPOSITE Initializes the camera.
huart, uint8_t res, uint8_t comp,
uint8_t *array)

uintl6 t COMPOSITE Executes the getPhoto structure,

getPhoto(UART_HandleTypeDef huart, obtaining the photo, length and

uint8_t *infoarray) storing the photo inside Flash
Memory.

uintl6_t storeDataFlash() might be EXTRA Stores the data inside Flash Memory.

removed

void storelnfo(uint8_t info) EXTRA Stores info inside array.

bool checkACK(UART_HandleTypeDef CORRECTION Checks ACK from camera.

huart, uint8_t c1, uint8_t c2, uint8_t
€3, uint8_t c4, uint8_t c5)

bool err(UART_HandleTypeDef huart) CORRECTION Executes error protocol.

Table 1: Designed Software functions

Basic functions

As explained before, we have the commands which are sent to the camera, and the commands
expected. Anyway, there should be a function which sends that information to the camera using
the UART protocol. The STM32 has a native library which implements this (HAL_UART_Transmit,
HAL_UART _Receive). In this case, a specific implementation of this function for each command has
been done.

A general view of these functions is presented below:

Establish the state

}

Store the information
inside the infoBuffer.

‘

Reset the data buffer

v

Check ACK from the Camera |—3»{ Execute the errorProtocol 4>-

Figure 1: Basic Functions Block Diagram

This scheme can be used for each basic function besides the getData function, at this current point
in time., varying the state and the transmit data Buffer and the receive data buffer.

It is known that a general buffer for all the information received can be implemented, but it can
also generate numerous problems on the implementation. As it is not necessary to implement and
it will complicate the code, different buffers are applied for different data.

The infoBuffer and state variable purpose will be explained in detail in other parts of the

https://wiki.nanosatlab.space/uploads/images/gallery/2024-03/f2usin-titulo.png

documentation.

getData

The getData function complexity severely differs from other basic functions due to the

implementation of circular DMA. In contrast to other functions, and due to the structure of the ones
used to store data in the flash memory, two relevant buffers have been created in order to store
and manage data before flashing. The use of DMA requires callbacks in order to flash data without
losing parts of it. In these callbacks, executed when the first buffer is half full and when it is full, will
cause an interrupt (not desired but necessary) where the flashing will occur. Here we will make use
of an auxiliary buffer in order to copy the second half of the first buffer onto it in order to not cause
overlap or flashing of repeated data.

Note that the callbacks are not called when all the data or half is received, they are called in
response to the fullness of the buffer (as long as its length coincides with the amount of data
specified in the HAL DMA functions). To solve the problem and know how much data shall be
received and DMA stopped we make use of the prior fuction, getDataLenght, which will provide us
with the total length of the picture. As callbacks are executed, an index will be increased and
through comparisons of it, the current callback and the length it'll be determined when to stop the
DMA and the execution of the function.

A comprehensive slightly simplified scheme is provided next:

https://wiki.nanosatlab.space/attachments/416

getData

aetDatalenght

Transmit
data

data length

Receive
data (DMA)

Keep receiving

» |Length-Indx|<2048 2 —»

| YES

—

Stop DMA
v

Flash remaining
data

v

-
Half Complete
Callback Complete Callback

storeFlash

¥
Clear half

buffer
¥
Increase

index
¥

HTC=1

AuxBuﬁer

Copy
]

storeFlash

v

Clear buffers

v

Increase
index

v

FTC=1

Transfer done

Figure 2: getData Function Block Diagram

Composite functions

These functions used different basic functions in order to follow the protocol from the mentioned

datasheet.

initCam

The initCam function initializes the camera with the resolution and the compressibility:
In this case, the initCam is implemented using the huart, the resolution and compressibility
needed, and an array in which errors will be stored.

A general scheme of the code is shown below:

https://wiki.nanosatlab.space/uploads/images/gallery/2024-03/getdata.png

Attributes: huart, res, comp, *array

Delay of 3s

v

Set resolution [compression

v

Executes reset function

!

Executes get Version function

v

Executes setResolution function

v

Executes setCompressibility function

v

Returns info Array
Retumns true

Figure 3: initCam Block Diagram

getPhoto

The getPhoto function is implemented using an UART and an info array attribute. This array is
where the buffer of errors will be stored. This function is in charge of executing the order to take
the photo, taking it, storing it, and executing the order to stop the camera. A general scheme of the

code is shown below:

https://wiki.nanosatlab.space/uploads/images/gallery/2024-03/iAssin-titulo.png

Execute function startCapture

Execute function getDataLength

Execute function getData

Figure 4: getPhoto Block Diagram

Revision #1
Created 15 November 2024 17:56:07 by roger.almirall
Updated 15 November 2024 17:56:17 by roger.almirall

https://wiki.nanosatlab.space/uploads/images/gallery/2024-03/getphoto.png

